Impaired NO-dependent inhibition of store- and receptor-operated calcium entry in pulmonary vascular smooth muscle after chronic hypoxia.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We have recently demonstrated that chronic hypoxia (CH) attenuates nitric oxide (NO)-mediated decreases in pulmonary vascular smooth muscle (VSM) intracellular free calcium concentration ([Ca2+]i) and promotes NO-dependent VSM Ca2+ desensitization. The objective of the current study was to identify potential mechanisms by which CH interferes with regulation of [Ca2+]i by NO. We hypothesized that CH impairs NO-mediated inhibition of store-operated (capacitative) Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) in pulmonary VSM. To test this hypothesis, we examined effects of the NO donor, spermine NONOate, on SOCE resulting from depletion of intracellular Ca2+ stores with cyclopiazonic acid, and on UTP-induced ROCE in isolated, endothelium-denuded, pressurized pulmonary arteries (213 +/- 8 microm inner diameter) from control and CH (4 wk at 0.5 atm) rats. Arteries were loaded with fura-2 AM to continuously monitor VSM [Ca2+]i. We found that the change in [Ca2+]i associated with SOCE and ROCE was significantly reduced in vessels from CH animals. Furthermore, spermine NONOate diminished SOCE and ROCE in vessels from control, but not CH animals. We conclude that NO-mediated inhibition of SOCE and ROCE is impaired after CH-induced pulmonary hypertension.