Hypersynchrony in MEG spectral amplitude in prospectively-identified 6-month-old infants prenatally exposed to alcohol.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Early identification of children who experience developmental delays due to prenatal alcohol exposure (PAE) remains a challenge for individuals who do not exhibit facial dysmorphia. It is well-established that children with PAE may still exhibit the cognitive and behavioral difficulties, and individuals without facial dysmorphia make up the majority of individuals affected by PAE. This study employed a prospective cohort design to capture alcohol consumption patterns during pregnancy and then followed the infants to 6 months of age. Infants were assessed using magnetoencephalography to capture neurophysiological indicators of brain development and the Bayley Scales of Infant Development-III to measure behavioral development. To account for socioeconomic and family environmental factors, we employed a two-by-two design with pregnant women who were or were not using opioid maintenance therapy (OMT) and did or did not consume alcohol during pregnancy. Based on prior studies, we hypothesized that infants with PAE would exhibit broad increased spectral amplitude relative to non-PAE infants. We also hypothesized that the developmental shift from low to high frequency spectral amplitude would be delayed in infants with PAE relative to controls. Our results demonstrated broadband increased spectral amplitude, interpreted as hypersynchrony, in PAE infants with no significant interaction with OMT. Unlike prior EEG studies in neonates, our results indicate that this hypersynchrony was highly lateralized to left hemisphere and primarily focused in temporal/lateral frontal regions. Furthermore, there was a significant positive correlation between estimated number of drinks consumed during pregnancy and spectral amplitude revealing a dose-response effect of increased hypersynchrony corresponding to greater alcohol consumption. Contrary to our second hypothesis, we did not see a significant group difference in the contribution of low frequency to high frequency amplitude at 6 months of age. These results provide new evidence that hypersynchrony, previously observed in neonates prenatally exposed to high levels of alcohol, persists until 6 months of age and this measure is detectable with low to moderate exposure of alcohol with a dose-response effect. These results indicate that hypersynchrony may provide a sensitive early marker of prenatal alcohol exposure in infants up to 6 months of age.