abstract
- We reported previously that simulating sleep apnea in rats by exposing them 7 hours per day to intermittent hypoxia/hypercapnia (IH) elevates plasma endothelin-1 and causes hypertension, which is reversed by an endothelin-1 antagonist. We hypothesized that in this model of sleep apnea-induced hypertension, vascular sensitivity to endothelin-1 is increased in combination with the elevated plasma endothelin-1 to cause the endothelin-1-dependent hypertension. In small mesenteric arteries with endothelial function disabled by passing air through the lumen, diameter and vessel wall [Ca2+] were recorded simultaneously. IH arteries demonstrated increased constrictor sensitivity to endothelin-1 (percentage max constriction 100+/-0% IH versus 80+/-10% Sham; P<0.05). This was accompanied by increased calcium sensitivity of IH arteries. In contrast, constrictor sensitivity and increases in vessel wall [Ca2+] to KCl and phenylephrine were not different between IH and Sham arteries. We have shown previously that endothelin-1 constriction in mesenteric arteries is mediated by endothelin A receptors. In the current study, the selective increase in endothelin-1 constriction in IH resistance arteries was accompanied by increased expression of endothelin A receptor expression (densitometry units 271+/-23 IH versus 158+/-25 Sham; P<0.05). Thus, IH hypertension appears to cause alterations in signaling components unique to endothelin-1 at the receptor level and in postreceptor signaling that increases calcium sensitivity during endothelin A activation. Future studies will determine the specific changes in vascular smooth muscle signaling in IH hypertension causing this augmented contractile phenotype.