abstract
- Food-storing birds use a form of long-term memory to recover their hidden food caches that depends on the hippocampal formation (HF). The authors assessed whether food-storing birds' long-term memory for spatial locations requires N-methyl-D-aspartate receptor (NMDA-R)-dependent synaptic plasticity. Black-capped chickadees (Poecile atricapilla) were given bilateral infusions of the NMDA-R antagonist AP5 into the hippocampus, and their memory on a spatial reference memory task was assessed. NMDA-R inactivation during learning prevented formation of long-term spatial memories but did not affect short-term memory and retrieval processes. NMDA-R inactivation immediately following learning did not disrupt long-term memory formation. NMDA-R inactivation disrupted the learning of multiple serially encoded reward locations when a 180-min delay separated successive learning episodes, suggesting that NMDA-R activity has a role in the incorporation of new information into existing long-term memory, as well as in forming unitary long-term memories.