Yeast Phosphofructokinase-1 Subunit Pfk2p Is Necessary for pH Homeostasis and Glucose-dependent Vacuolar ATPase Reassembly. Academic Article uri icon

abstract

  • V-ATPases are conserved ATP-driven proton pumps that acidify organelles. Yeast V-ATPase assembly and activity are glucose-dependent. Glucose depletion causes V-ATPase disassembly and its inactivation. Glucose readdition triggers reassembly and resumes proton transport and organelle acidification. We investigated the roles of the yeast phosphofructokinase-1 subunits Pfk1p and Pfk2p for V-ATPase function. The pfk1Δ and pfk2Δ mutants grew on glucose and assembled wild-type levels of V-ATPase pumps at the membrane. Both phosphofructokinase-1 subunits co-immunoprecipitated with V-ATPase in wild-type cells; upon deletion of one subunit, the other subunit retained binding to V-ATPase. The pfk2Δ cells exhibited a partial vma growth phenotype. In vitro ATP hydrolysis and proton transport were reduced by 35% in pfk2Δ membrane fractions; they were normal in pfk1Δ. In vivo, the pfk1Δ and pfk2Δ vacuoles were alkalinized and the cytosol acidified, suggestive of impaired V-ATPase proton transport. Overall the pH alterations were more dramatic in pfk2Δ than pfk1Δ at steady state and after readdition of glucose to glucose-deprived cells. Glucose-dependent reassembly was 50% reduced in pfk2Δ, and the vacuolar lumen was not acidified after reassembly. RAVE-assisted glucose-dependent reassembly and/or glucose signals were disturbed in pfk2Δ. Binding of disassembled V-ATPase (V1 domain) to its assembly factor RAVE (subunit Rav1p) was 5-fold enhanced, indicating that Pfk2p is necessary for V-ATPase regulation by glucose. Because Pfk1p and Pfk2p are necessary for V-ATPase proton transport at the vacuole in vivo, a role for glycolysis at regulating V-ATPase proton transport is discussed.© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

publication date

  • January 1, 2014