Integrated statistical and pathway approach to next-generation sequencing analysis: a family-based study of hypertension.
Academic Article
Overview
Identity
Additional Document Info
View All
Overview
abstract
Genome wide association studies (GWAS) have been used to search for associations between genetic variants and a phenotypic trait of interest. New technologies, such as next-generation sequencing, hold the potential to revolutionize GWAS. However, millions of polymorphisms are identified with next-generation sequencing technology. Consequently, researchers must be careful when performing such a large number of statistical tests, and corrections are typically made to account for multiple testing. Additionally, for typical GWAS, the p value cutoff is set quite low (approximately <10(-8)). As a result of this p value stringency, it is likely that there are many true associations that do not meet this threshold. To account for this we have incorporated a priori biological knowledge to help identify true associations that may not have reached statistical significance. We propose the application of a pipelined series of statistical and bioinformatic methods, to enable the assessment of the association of genetic polymorphisms with a disease phenotype--here, hypertension--as well as the identification of statistically significant pathways of genes that may play a role in the disease process.