abstract
- A wide range of oligo-p-phenylene ethynylenes has been shown to exhibit good biocidal activity against both Gram-negative and Gram-positive bacteria. While cell death may occur in the dark, these biocidal compounds are far more effective in the light as a result of their ability to sensitize the production of cell-damaging reactive oxygen species. In these studies, the interactions of a specific cationic oligo-p-phenylene ethynylene with spore-forming Bacillus atrophaeus and Bacillus anthracis Sterne have been investigated. Flow cytometry assays are used to rapidly monitor cell death as well as spore germination. This compound effectively killed Bacillus anthracis Sterne vegetative cells (over 4 log reduction), presumably by severe perturbations of the bacterial cell wall and cytoplasmic membrane, while also acting as an effective spore germinant in the dark. While 2 log reduction of B. anthracis Sterne spores was observed, it is hypothesized that further killing could be achieved through enhanced germination.