abstract
- Acute inflammatory responses to invading bacteria such as Staphylococcus aureus include mobilization of polymorphonuclear leukocytes (PMN) and extracellular group IIA phospholipase A2 (gIIA-PLA2). Although accumulating coincidentally, the in vitro anti-staphylococcal activities of PMN and gIIA-PLA2 have thus far been studied separately. We now show that degradation of S. aureus phospholipids during and after phagocytosis by human PMN requires the presence of extracellular gIIA-PLA2. The concentration of extracellular gIIA-PLA2 required to produce bacterial digestion was reduced 10-fold by PMN. The effects of added gIIA-PLA2 were greater when present before phagocytosis but even apparent when added after S. aureus were ingested by PMN. Related group V and X PLA2, which are present within PMN granules, do not contribute to bacterial phospholipid degradation during and after phagocytosis even when added at concentrations 30-fold higher than that needed for action of the gIIA-PLA2. The action of added gIIA-PLA2 required catalytically active gIIA-PLA2 and, in PMN, a functional NADPH oxidase but not myeloperoxidase. These findings reveal a novel collaboration between cellular oxygen-dependent and extracellular oxygen-independent host defense systems that may be important in the ultimate resolution of S. aureus infections.