Cell surface beta1,4-galactosyltransferase function in mammary gland morphogenesis: insights from transgenic and knockout mouse models. Academic Article Review uri icon

abstract

  • Development and morphogenesis are profoundly influenced by cell-cell and cell-extracellular matrix (ECM) interactions that are governed by cell surface receptor association with specific ligands. One such receptor is the long isoform of beta1,4-galactosyltransferase I (GalT I), a small proportion of which is targeted to the plasma membrane. Surface-expressed GalT I binds to specific glycoside residues on multiple extracellular ligands, and GalT I binding to specific ligands mediates cell-cell as well as cell-matrix interactions for a variety of cells, including mammary epithelia. Significant insight into surface GalT I function in mammary gland development and morphogenesis has been gained through the analysis of mouse transgenic and knockout models of surface GalT I misexpression. Overexpression of cell surface GalT I leads to impaired lactation as a result of reduced branching and differentiation and elevated apoptosis, while deleting surface GalT I enhances branching and differentiation and reduces apoptosis. These phenotypes can be attributed in large part to altered cell-ECM interactions. The current and future challenges are to use these mouse models to dissect the molecular mechanisms that govern surface GalT I function as a receptor in the normal mammary gland, as well as to assess the potential for surface GalT I misexpression to contribute to disease.

publication date

  • January 1, 2003