Tyrosine kinases regulate intracellular calcium during alpha(2)-adrenergic contraction in rat aorta. Academic Article uri icon


  • We have demonstrated enhanced contractile sensitivity to the alpha(2)-adrenoreceptor (alpha(2)-AR) agonist UK-14304 in arteries from rats made hypertensive with chronic nitric oxide synthase (NOS) inhibition (LHR) compared with arteries from normotensive rats (NR); additionally, this contraction requires Ca(2+) entry. We hypothesized that tyrosine kinases augment alpha(2)-AR contraction in LHR arteries by increasing Ca(2+). The tyrosine kinase inhibitor tyrphostin 23 significantly attenuated UK-14304 contraction of denuded thoracic aortic rings from NR and LHR. However, tyrphostin 23 did not alter UK-14304 contraction in ionomycin-permeabilized aorta, which indicates that tyrosine kinases regulate intracellular Ca(2+) concentration. The Src family inhibitor PP1 and the epidermal growth factor receptor kinase inhibitor AG-1478 did not alter alpha(2)-AR contraction, whereas the mitogen-activated protein kinase extracellular signal-regulated kinase kinase inhibitor PD-98059 attenuated the contraction. Contraction to CaCl(2) in ionomycin-permeabilized LHR rings was greater than in NR rings. UK-14304 augmented CaCl(2) contraction in ionomycin-permeabilized rings from both groups but to a greater extent in LHR aorta. Together, these data suggest that alpha(2)-AR stimulates contraction via two pathways. One, which is enhanced with NOS inhibition hypertension, activates Ca(2+) sensitivity and is independent of tyrosine kinases. The other is tyrosine kinase dependent and regulates intracellular Ca(2+) concentration.

publication date

  • October 2002