Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Src family kinases (SFK) are currently being investigated as targets for treatment strategies in various cancers. The novel SFK/Abl inhibitor, dasatinib (BMS-354825), is a promising therapeutic agent with oral bioavailability. Dasatinib has been shown to inhibit growth of Bcr-Abl-dependent chronic myeloid leukemia xenografts in nude mice. Dasatinib also has been shown to have activity against cultured human prostate and breast cancer cells. However, the molecular mechanism by which dasatinib acts on epithelial tumor cells remains unknown. In this study, we show that dasatinib blocks the kinase activities of the SFKs, Lyn, and Src, in human prostate cancer cells at low nanomolar concentrations. Moreover, focal adhesion kinase and Crk-associated substrate (p130(CAS)) signaling downstream of SFKs are also inhibited at similar concentrations of dasatinib. Consistent with inhibition of these signaling pathways, dasatinib suppresses cell adhesion, migration, and invasion of prostate cancer cells at low nanomolar concentrations. Therefore, dasatinib has potential as a therapeutic agent for metastatic prostate cancers harboring activated SFK and focal adhesion kinase signaling.