A single precursor protein for two separable mitochondrial enzymes in Neurospora crassa. Academic Article uri icon

abstract

  • The arg-6 locus of Neurospora crassa encodes two early enzymes of the arginine biosynthetic pathway, acetylglutamate kinase and acetylglutamyl-phosphate reductase. Previous genetic and biochemical analyses of this locus and its products showed that: 1) strains carrying polar nonsense mutations in the acetylglutamate kinase gene lacked both enzyme activities (Davis, R.H., and Weiss, R.L. (1983) Mol. Gen. Genet. 192, 46-50), and 2) the proteins isolated from mitochondria were completely separable (Wandinger-Ness, A., Wolf, E.C., Weiss, R.L., and Davis, R.H. (1985) J. Biol. Chem. 260,5974-5978). These data suggested that the two enzymes were initially synthesized as a single precursor which was subsequently cleaved into two distinct polypeptides. We report here the identification of a high molecular weight protein, synthesized in vitro from isolated N. crassa RNA, that contains sequences corresponding to acetylglutamate kinase as well as acetylglutamyl-phosphate reductase. An analogous precursor was identified in vivo by pulse-labeling experiments. The precursor was similar to other mitochondrial precursors in that its uptake and processing in vivo was rapid and required an intact mitochondrial electrochemical gradient. This represents the first report of a bifunctional protein precursor which gives rise to two mitochondrial enzymes.

publication date

  • January 1, 1987