Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Academic Article uri icon

abstract

  • Congenital anomalies of the kidney and urinary tract and genetic disorders cause most cases of CKD in children. This study evaluated the relationships between baseline proteinuria and BP and longitudinal changes in GFR in children with these nonglomerular causes of CKD.Urine protein-to-creatinine ratio, casual systolic and diastolic BP (normalized for age, sex, and height), and GFR decline were assessed in the prospective CKD in Children cohort study.A total of 522 children, median age 10 years (interquartile range, 7, 14 years) with nonglomerular CKD were followed for a median of 4.4 years. The mean baseline GFR in the cohort was 52 ml/min per 1.73 m(2) (95% confidence interval [95% CI], 50 to 54) and declined 1.3 ml/min per 1.73 m(2) per year on average (95%CI, 1.6 to 1.1). A 2-fold higher baseline urine protein-to-creatinine ratio was associated with an accelerated GFR decline of 0.3 ml/min per 1.73 m(2) per year (95% CI, 0.4 to 0.1). A 1-unit higher baseline systolic BP z-score was associated with an additional GFR decline of 0.4 ml/min per 1.73 m(2) per year (95% CI, 0.7 to 0.1). Among normotensive children, larger GFR declines were associated with larger baseline urine protein-to-creatinine ratios; eGFR declines of 0.8 and 1.8 ml/min per 1.73 m(2) per year were associated with urine protein-to-creatinine ratio <0.5 and ≥0.5 mg/mg, respectively. Among children with elevated BP, average GFR declines were evident but were not larger in children with higher levels of proteinuria.Baseline proteinuria and systolic BP levels are independently associated with CKD progression in children with nonglomerular CKD.Copyright © 2015 by the American Society of Nephrology.

publication date

  • April 2015