Comparative effects of aprotinin and human recombinant R24K KD1 on temporal renal function in Long-Evans rats.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Bovine aprotinin, a reversible inhibitor of plasmin and kallikrein, has been clinically approved for over two decades to prevent perioperative blood loss during cardiac surgery. However, because of postoperative renal dysfunction in thousands of these patients, aprotinin was voluntarily withdrawn from the market. Our earlier studies indicated that a R24K mutant of the first Kunitz-type domain of human tissue factor pathway inhibitor-2 (R24K KD1) exhibited plasmin inhibitory activity equivalent to aprotinin in vitro. In this study, we compared the effects on renal function after infusion of aprotinin and recombinant R24K KD1 in chronically instrumented, conscious rats. Aprotinin-infused rats exhibited statistically significant decreases in glomerular filtration rate and effective renal plasma flow relative to rats infused with phosphate-buffered saline (PBS) or R24K KD1 dissolved in PBS. In addition, aprotinin-treated rats exhibited marked increases in serum creatinine, blood urea nitrogen, urinary protein, and effective renal vascular resistance, whereas these renal parameters remained essentially unchanged in vehicle and R24K KD1-treated rats for a one-week period. Moreover, with use of a highly sensitive apoptosis detection assay, a significant increase in the rate of early and late apoptotic events in renal tubule cells occurred in aprotinin-treated rats relative to R24K KD1-treated rats. In addition, histological examination of the rat kidney revealed markedly higher levels of protein reabsorption droplets in the aprotinin-infused rats. Our data collectively provide suggestive evidence that R24K KD1 does not induce the renal dysfunction associated with aprotinin, and may be an effective clinical alternative to aprotinin as an antifibrinolytic agent in cardiac surgery.