Pre- and Post-Interventional Changes in Physiological Profiles in a Patient Presenting With Opioid Withdrawal After Intrathecal Drug Delivery System Failure Related to Assumed Catheter Microfracture. Case Study uri icon

abstract

  • The intrathecal drug delivery system (IDDS) is successfully utilized for the treatment of chronic pain conditions; however, they are associated with complications related to human error and system failure. A case report is presented of a patient with opioid withdrawal (OW) secondary to assumed catheter microfracture. Interrogation of the IDDS allowed for the collection of pre- and post-treatment/stabilization cerebrospinal fluid (CSF), which is used to investigate the possible physiological determinants of OW. A 46-year-old female with a history of low back pain after traumatic low back injury status post-IDDS placement for failed back surgery syndrome presented with signs and symptoms concerning for OW. After every other possible explanation was ruled out, it was hypothesized that there may be IDDS catheter microfracture(s), and catheter replacement led to symptom resolution. There were no significant differences in cytokine levels tested in pre-CSF versus post-CSF samples. Whole-cell patch-clamp electrophysiology analysis of human-induced pluripotent stem cell-derived nociceptors after treatment with pre- and post-CSF samples demonstrated modulation of action potential waveform. In patients presenting with acute OW attribution IDDS malfunction, catheter microfracture must be in the differential, and non-conventional interrogation of the IDDS catheter should be considered. The possible differences in pre-CSF and post-CSF may be more complicated than previously postulated, as there were no significant differences in cytokine profiles; however, treatment of in vitro neurons with pre- and post-CSF resulted in differential neuronal excitability, which may account for some of the symptoms of OW.Copyright © 2021, Ehsanian et al.

publication date

  • May 2021

published in