Fear conditioning is associated with altered integration of PLC and ERK signaling in the hippocampus. Academic Article uri icon

abstract

  • The extracellular signal-regulated protein kinases (ERKs) are proline-directed, serine/threonine kinases that regulate a variety of cellular functions, including proliferation, differentiation, and plasticity. In the present report, we provide evidence that ERK2 and phosphatidylinositol-specific phospholipase C (PLC)-beta and -gamma isozymes interact in the rat hippocampal formation. We found that anti-PLC-beta1a, -beta2, -beta4, -gamma1 and -gamma2, but not -beta3, immune complexes isolated from rat hippocampal formation postnuclear fractions contain anti-ERK2 immunoreactivity. Further, we show that PLC catalytic activity is associated with anti-ERK2 immunoprecipitates isolated from the hippocampal formation, and that the amount of enzyme activity is significantly increased following fear-conditioned learning. The observed interactions may be mediated by consensus sequences conforming to an ERK2 docking site, termed a D-domain, that we identified in PLC-beta1a, -beta2, -beta4 -gamma1 and -gamma2. Based on these results, we propose that PLC-beta and PLC-gamma isozymes form signaling complexes with ERK2 in rat brain, and these complexes play critical roles in learning and memory, as well as a variety of other neuronal functions.

publication date

  • January 1, 2004