In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry.
Academic Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O₂ may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O₂ is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO₂ in vivo remains largely uncharacterized. This study investigated striatal tissue pO₂ changes in male C57BL/6 mice (16-20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO₂ in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO₂ was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO₂ to 64%. More importantly, pO₂ did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO₂ indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO₂, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults.Copyright © 2014 Elsevier Inc. All rights reserved.
publication date
published in
Research
keywords
-
Animals
-
Cerebrovascular Circulation
-
Dose-Response Relationship, Drug
-
Electron Spin Resonance Spectroscopy
-
Hypoxia, Brain
-
Male
-
Methamphetamine
-
Mice
-
Mice, Inbred C57BL
-
Neostriatum
-
Oximetry
-
Oxygen
Identity
Digital Object Identifier (DOI)
PubMed ID
Additional Document Info
start page
end page
volume
number