Virulence inhibition by zinc in shiga-toxigenic Escherichia coli. Academic Article uri icon

abstract

  • Previously, our laboratories reported that zinc inhibited expression of several important virulence factors in enteropathogenic Escherichia coli (EPEC) and reduced EPEC-induced intestinal damage in vivo. Since EPEC is genetically related to Shiga-toxigenic E. coli (STEC), we wondered whether the beneficial effects of zinc extended to STEC as well. Treatment options for STEC infection are very limited, since antibiotics tend to exacerbate disease via enhanced toxin production, so a safe intervention for this infection would be welcome. In this study, we report that in STEC strains zinc inhibits adherence to cultured cells as well as expression of EHEC secreted protein A (EspA). In addition, zinc inhibits the expression of Shiga toxin (Stx) at both the protein and the RNA level. Zinc inhibits basal and antibiotic-induced Stx production and inhibits both Stx1 and Stx2 by ?90% at a concentration of 0.4 mM zinc. Rabbit EPEC strains were selected for acquisition of Stx-encoding bacteriophages, and these rabbit STEC strains (designated RDEC-H19A and E22-stx2) were used to test the effects of zinc in vivo in ligated rabbit intestinal loops. In vivo, zinc reduced fluid secretion into loops, inhibited mucosal adherence, reduced the amount of toxin in the loops, and reduced STEC-induced histological damage (villus blunting). Zinc has beneficial inhibitory effects against STEC strains that parallel those observed in EPEC. In addition, zinc strongly inhibits Stx expression; since Stx is responsible for the extraintestinal effects of STEC infection, such as hemolytic-uremic syndrome (HUS), zinc might be capable of preventing severe sequelae of STEC infection.

publication date

  • January 1, 2011