Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Academic Article uri icon

abstract

  • Toll-like receptor 4 (TLR4) and its coreceptor, myeloid differentiation factor-2 (MD-2), are key in recognition of lipopolysaccharide (LPS) and activation of proinflammatory pathways. Here we tested the hypothesis that TLR4 and its coreceptor MD-2 play a central role in nonalcoholic steatohepatitis (NASH) and liver fibrosis in nonalcoholic fatty liver disease. Mice of control genotypes and those deficient in MD-2 or TLR4 [knockout (KO)] received methionine choline-deficient (MCD) or methionine choline-supplemented (MCS) diet. In mice of control genotypes, MCD diet resulted in NASH, liver triglycerides accumulation, and increased thiobarbituric acid reactive substances, a marker of lipid peroxidation, compared with MCS diet. These features of NASH were significantly attenuated in MD-2 KO and TLR4 KO mice. Serum alanine aminotransferase, an indicator of liver injury, was increased in MCD diet-fed genotype controls but was attenuated in MD-2 KO and TLR4 KO mice. Inflammatory activation, indicated by serum TNF-? and nictoinamide adenine dinucleotide phosphate oxidase complex mRNA expression and activation, was significantly lower in MCD diet-fed MD-2 KO and TLR4 KO compared with corresponding genotype control mice. Markers of liver fibrosis [collagen by Sirius red and ?-smooth muscle actin (SMA) staining, procollagen-I, transforming growth factor-?1, ?-SMA, matrix metalloproteinase-2, and tissue inhibitor of matrix metalloproteinase-1 mRNA] were attenuated in MD-2 and TLR4 KO compared with their control genotype counterparts. In conclusion, our results demonstrate a novel, critical role for LPS recognition complex, including MD-2 and TLR4, through NADPH activation in liver steatosis, and fibrosis in a NASH model in mice.

publication date

  • January 1, 2011