gamma-Aminobutyric acid-activated chloride channels: relationship to genetic differences in ethanol sensitivity. Academic Article uri icon

abstract

  • We demonstrated recently that low concentrations of ethanol enhanced the muscimol-stimulated chloride influx in cerebellar membranes from long sleep (LS-ethanol sensitive) mice, but had no effect on membranes from short sleep (SS-ethanol resistant) mice. The LS and SS were selected from a heterogeneous stock (HS) of mice for differential sensitivity to the hypnotic effects of ethanol as measured by the duration of the loss of the righting reflex (sleep time). In the present study, we tested 100 HS for ethanol sleep time. The mice with the shortest sleep time (HS-SS) and the mice with the longest sleep time (HS-LS) were selected and tested for the effect of ethanol and muscimol on chloride flux in cerebellum. The effects of ethanol and muscimol on both cerebellar and cortical chloride flux were also examined in rats from the 7th generation selected for differential sensitivity to the hypnotic effects of ethanol (high acute ethanol sensitive rats-HAS and low acute ethanol sensitive rats-LAS). Low concentrations of ethanol (10-30 mM) potentiated muscimol stimulation of 36Cl- uptake in both cortical and cerebellar membranes prepared from ethanol-sensitive animals (HS-LS and HAS). None of the ethanol concentrations tested altered stimulated chloride uptake in ethanol-resistant animals (HS-SS and LAS). No differences in muscimol stimulation of chloride uptake were observed between the pairs of selected lines. These findings strongly suggest that genetic differences in ethanol hypnosis are related to differences in the sensitivity of gamma-aminobutyric acid-operated chloride channels to ethanol.

publication date

  • March 1988