Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning. Academic Article uri icon

start page

  • 868

end page

  • 877

abstract

  • The ability to predict early in the course of treatment the response of breast tumors to neoadjuvant chemotherapy can stratify patients based on response for patient-specific treatment strategies. Currently response to neoadjuvant chemotherapy is evaluated based on physical exam or breast imaging (mammogram, ultrasound or conventional breast MRI). There is a poor correlation among these measurements and with the actual tumor size when measured by the pathologist during definitive surgery. We tested the feasibility of using quantitative MRI as a tool for early prediction of tumor response. Between 2007 and 2010 twenty consecutive patients diagnosed with Stage II/III breast cancer and receiving neoadjuvant chemotherapy were enrolled on a prospective imaging study. Our study showed that quantitative MRI parameters along with routine clinical measures can predict responders from non-responders to neoadjuvant chemotherapy. The best predictive model had an accuracy of 0.9, a positive predictive value of 0.91 and an AUC of 0.96.

date/time value

  • 2011

PubMed Identifier

  • 22195145

volume

  • 2011

number